Coordination Number Six

Octahedral is a very important geometry. It is the starting point for the shapes of most transition metal complexes.

1. Regular Octahedron all distances are EQUIVALENT

3. Distorted Octahedron (Rhombic distortion)

2. Distorted Octahedron (axial distortion)

 $a \neq b$

4. **Distorted Octahedron** (trigonal distortion)

The last example, trigonal prismatic is not as stable as the regular octahedron, because L-L distances are not maximized in the trigonally distorted geometry. This is a rare geometry for ML_6 complexes

Higher Coordination numbers

<u>Seven</u>

Pentagonal bipyramid Octahedron + an extra ligand Trigonal prism + an extra ligand

Eight

1. <u>Cube</u> \rightarrow

2. <u>square antiprism</u> twist one face

rotate the corners of once face until it is 45° out of phase

1. <u>Cube</u>

2. <u>dodecahedron</u> pull corners away from each other

(Grab opposite ends & pull up & down)

Nomenclature of Coordination Complexes

Follow IUPAC rules very specific

Examples

- 1. mer-trichlorotris(triphenylphosphine)rhodium(I)
- 2. potassium tetrabromocuprate (II)
- 3. trans-dichlorotetraaquachromium (II) chloride

key aspects of these names

- 1. prefix cis, trans, mer, fac
- 1 define
- 2. Which ligands come first in a mixed ligand complex
- 3. Which type of prefix bi, bis, tri, tris, tetra, tetrakis etc.,

- 4. oxidation state of the metal
- 5. Special issues such as
 - Optical isomers
 - Bridging vs. non-bridging
 - Endings for ligands "ite" "ide" "ate" "o"
 - Special names for ligands
 - Charge on the compound

Book gives 11 rules

Distill them down

 $\begin{bmatrix} 1 \end{bmatrix}$ No spaces in name except if it is a salt, put a space between cation and anion, and the cation is first.

Name is organized according to:

Anionic Ligands/Neutral Ligands/CationicLigands/ Metal Name/Oxidation state of Metal

Within these categories we must establish rules of:

- (a) alphabetical order
- (b) prefixes and suffixes for ligands
- (c) suffix or not for the metal

2 <u>Prefixes and Suffixes</u>

Prefixes

2 di	bis
3 Tri	tris
4 Tetra	tetrakis
4 Penta	pentakis
6 Hexa	hexakis

use di, tri etc., unless the ligand name already has one of these as part of it's name

then use bis, tris etc.

Suffixes

(a) anionic ligands

end in "o"

$\underline{\text{ate}} \rightarrow \text{ato}$	acet <u>ate</u>	$\rightarrow acet ato$
$\underline{\text{ide}} \rightarrow \text{ido}$	nitr <u>ide</u>	→ nitr <u>ido</u>
$\underline{\text{ite}} \rightarrow \text{ito}$	sulf <u>ite</u>	\rightarrow sulfito

 $CH_3CO_2^-$ acetato N₃⁻ nitrido SO_3^2 sulfito

(b) neutral ligands are the same as molecule name with a few exceptions:

$NH_3 \rightarrow$	M-NH ₃
ammonia	ammine
$H_2O \rightarrow$ water	M-OH ₂ aqua
$\begin{array}{l} \text{NO} \rightarrow \\ \text{nitrogen} \\ \text{monoxide} \end{array}$	M-NO nitrosyl

 $\begin{array}{ccc} CO & \rightarrow & M-CO \\ carbon & carbonyl \\ monoxide & \end{array}$

(c) organic groups (keep same name)

CH₃ M-CH₃ Methyl methyl

(d) metal suffix

 C_6H_5

- (i) if compound is neutral or cationic $[RuL_6]^{3+}$ no suffix ruthenium \rightarrow ruthenium
- (ii) if compound is anionic, then metal name is changed to ate ending

 $[RuL_6]^{3-}$ ruthenium \rightarrow ruthenate

3 Within each category of ligand, alphabetize the ligands within each group if more than one type is present (anions first, neutral second, cationic third) (NOTE: don't count bi, tri etc., in alphabetizing)

4

Metal oxidation state is written in parentheses in Roman numerals at the end

- 5 Special Characters and abbreviations
- (a) Geometrical isomers

cis, trans arrangements for two types of X ligands

fac, mer arrangements for three types of X ligands

(b) optical isomers use symbols Δ and Λ

tris-chelate complexes of the D_3 point group where chelate = ethylenediamine, 1,10-phenanthroline, oxalate, etc. exist as pairs of optical isomers.

 $M-NO_2^-$ nitro M-ONO⁻ nitrite

(a) H₂O (hydrate)
 Water can be in a formula like this MCI₆·nH₂O (Number of water molecules of hydration)

- H₂O monohydrate
- 2H₂O dihydrate etc.

dichlorotetraaquachromium(III) chloride

acetylacetonatochloroammineplatinum(II)

salt composed of a cation and n anion Ex #4 K[FeCl₄] Fe is Fe(III) called ferrous anionic ligand

potassium tetrachloroferrate(III)

(iron is not written as iron<u>ate</u>!)

neutral ligand

Ex #5 $[Co(en)_3]_2(SO_4)_3$ Cation anion

Ratio of cation to anion is 2:1 two $[Co(en)_3]^{2+}$ units

 \downarrow three ethylenediamine (en) ligands

bis{tris[ethylenediamine)cobalt(III)} sulfate

Practice drawing the structure based on a formula

Mer-trihydrotris(triphenylphosphine)rhodium(III)

<u>mer</u> is 3 groups around the perimeter

fac-trihydrotris(triphenylphosphine)rhodium(III)

Stability of Complexes in Solution

Stepwise formation of metal ligand complexes involve Equilibria

(1)
$$M + L \leftrightarrow ML$$

$$K_{1} = \frac{[ML]}{[M][L]}$$
(2) $ML + L \leftrightarrow ML_{2}$
etc.,
until
last step

(6)
$$ML_5 + L \leftrightarrow ML_6$$
 $K_6 = \frac{[ML_6]}{[ML_5][L]}$

- <u>Six equilibria</u> are <u>involved</u> in the <u>formation</u> of ML_6 from M and 6L.
- Each K_i is a step-wise formation constant
- Concentration of [L] determines the relative concentrations of products

Then $\beta_3 = K_1 \cdot K_2 \cdot K_3$

or the product of all three step-wise reactions

Usually K_i decreases with each subsequent step.

As ligand is added to the metal ion M, ML forms first, then when more ligand is added, [ML₂] rises sharply & [ML] drops. With more added L, [ML₂] drops and [ML₃] rises etc., etc.,

Since the ligand addition to form a new complex is always reversible, an ML_n reaction progresses with greater n values and there are more ligands to dissociate (fall back off) and fewer places to put the new ligands in the coordination sphere, so it is expected that step wise K_i 's would drop.

Cd²⁺ + NH₃ ↔ [Cd(NH₃)]²⁺
$$K_1 = 10^{2.65}$$

[Cd(NH₃)₃]²⁺ + NH₃ ↔ [Cd(NH₃)₄]²⁺ $K_4 = 10^{0.93}$
formation of [Cd(NH₃)₄]²⁺ illustrates the decrease in

equilibrium constant with added L groups.

- **Q.** What are formation constants useful for?
- <u>A.</u> Separation of ions in the presence of each other Ex. $EDTA^{2-}$ selectively pulls M^{2+} out of water in the presence of more highly charged cations

EDTA is an <u>aminopolycarboxylic acid</u> and a colorless, water-soluble solid. Its <u>conjugate base</u> is **ethylenediaminetetraacetate**. It is widely used to dissolve <u>limescale</u> (which is moistly CaCO₃). Its usefulness arises because of its role as a <u>hexadentate</u> ("six-toothed") <u>ligand</u> and <u>chelating agent</u>, *i.e.*, its ability to sequester <u>metal ions</u> such as Ca^{2+} and Fe^{3+} . After being bound by EDTA into a <u>metal complex</u>, metal ions remain in solution but exhibit diminished reactivity. EDTA is produced as several salts, notably **disodium EDTA**, **calcium disodium EDTA**, and <u>tetrasodium EDTA</u>.

The hexadentate ligand "wraps itself" around the M^{2+} center.

EDTA binding brings up another important stability issue, namely the "<u>Chelate Effect</u>"

.... Why?

To reverse the reaction of M + en is more difficult than for $M+2NH_3$. If one of the NH_2 groups "falls off" there is still another bond to hold it onto the metal

easy to reverse "partial dissociation"

..... $[Ni(en)_3]^{2+}$ is 10^{10} times more stable!

- **Q.** Why? The bonds are very similar!
- **<u>A.</u>** ΔG° is affected by <u>enthalpic</u> and <u>entropic</u> contributions.

<u>..... recall</u>

in the $[Ni(NH_3)_6]^{2+}$ vs $[Ni(en)_3]^{2+}$ case, we can perform a reaction and determine K.

 $[\operatorname{Ni}(\operatorname{NH}_3)_6]^{2+} + 3(\operatorname{en}) \leftrightarrow [\operatorname{Ni}(\operatorname{en})_3]^{2+} + 6\operatorname{NH}_3$

$$K = 10^{9.7}$$
$$\Delta G^{\circ} = -RT lnK$$
$$= -67 \text{ kJ/mol}$$

 $\Delta H^{\circ} = -T\Delta S^{\circ} = -67 \text{ kJ/mol}$ If we know that ΔH° is: $\Delta H^{\circ} = -12 \text{ kJ/mol}$ <u>Then</u> $-T\Delta S = -55 \text{ kJ/mol}$

Note, both enthalpy and entropy considerations favor the <u>chelate complex</u>, but the entropy effect is much more important

<u>Bottom line</u>: The <u>Chelate</u> <u>Effect</u> is Essentially an Entropic Effect.

In order to understand this: the Ni reaction must be examined in more detail.

 $[Ni(H_2O)_6]^{2+} + 6NH_3 [Ni(NH_3)_6]^{2+} + 6H_2O$ The number of "particles' hasn't changed from Reactant to products (7 in both cases)

BUT.... $[Ni(H_2O)_6]^{2+} + 3en [Ni(en)_3]^{2+} + 6H_2O$ 4 particles 7 particles The reaction is entropically driven to the right \rightarrow is more disordered!

Reactivity Patterns of Coordination Compounds

Covers a very large number of issues in transition metal chemistry.

Main ones to be highlighted in this course:

- Substitution
- Electron Transfer
- Isomerization

*The correlation of these reactions with electronic and molecular structure is the essence of much of inorganic chemistry.

Octahedral Complexes

Substitution chemistry

 Labile – ligands that are easily substituted Lability – refers to the ability of a coordination complex to lose one or more of it's ligands with others in solution <u>Inert</u> – refers to the lack of ability of a coordination complex to lose one or more of its ligands with others in solution

. . * "<u>Labile</u> versus <u>Inert</u>" is not the same as"<u>Unstable</u> versus <u>Stable</u>."

Stability refers to the tendency of a species to exist which is a Thermodynamic issue whereas Labile versus Inert is a Kinetic Issue

 $[Co(NH_3)_6]^{3+}$ is not a very "stable" compound thermodynamically judging by:

$$[Co(NH_3)_6]^{3+} + 6H_3O^+ \leftrightarrow [Co(H_2O)_6]^{3+} + 6NH_4^+$$

K = 10²⁵ for left to right!

But the reaction takes months because of the "inertness" of the compound. The reaction is <u>very</u> <u>slow.</u>

<u>Working definition of inert and labile</u> labile reactions <1 minute half-life (over in time of mixing)

inert reactions >1 minute half-life (can easily be studied by conventional means)

Two Types of Ligand Substitution:

- 1. Associative (A) (addition-elimination)
- 2. Dissociative (D)

(A) 1. $[L_5MX] + Y \rightarrow [L_5M(X)Y] \rightarrow [L_5MY] + X$ $^{\uparrow}$ 7-coord. intermediate

Y directly binds before X leaves

(D)
2.
$$[L_5MX] \rightarrow [L_5M] + X \rightarrow [L_5MY] + X$$

5-coord. intermediate

In both cases, the first step, which is slow, is ratedetermining.

- (A) is bimolecular process
- (D) is unimolecular process

(A) & (D) are just extremes of what can really happen

<u>Associative</u> may not involve a "real" 7-coordinate intermediate. Some "degree" of bond-breaking to X and bond-making to Y is happening in the intermediate (or transition state complex)

Dissociative, likewise, may also have most of the M-X bond broken (but not all) before the near M-Y bond forms.

Real life is rarely simple!

L5M<X (A) [HLSX]+Y -[ML5Y]+X - reaction coordinate -> Associative (IA) Interchange - Associative LSM (MLSX]+Y [M15]+X

<u>Types of Reactions in Octahedral Metal Complex</u> <u>Substitution Chemistry</u>

- (1) Solvent interactions
- (2) ion-pair formation
- (3) conjugate-base formation
- (4) anation reactions
- (5) aquation reactions acid, base hydrolysis
- (6) ligand assisted reactions

Square-Planar Substitution Reactions

- (1) charge effects
- (2) steric effects
- (3) entering ligand effects
- (4) stereochemistry