Carbon Monoxide

10 valence electrons:
$\sigma_{1}{ }^{2} \sigma_{2}{ }^{* 2} \pi_{1}{ }^{4} \sigma_{3}{ }^{2}$ (B.O. $=3.0$)
M.O. Diagrams for the Isoelectronic N_{2} and CO molecules are very different. They help explain the different reactivites of N_{2} versus CO in a way that Lewis Diagrams never could (or formal charges!)
N_{2}
(1) Highest e^{-}are in a bonding orbital $\sigma_{1}{ }^{2} \sigma_{1} *^{2} \pi_{1}{ }^{4} \sigma_{3}{ }^{2}, \mathrm{~s} / \mathrm{p}_{\mathrm{z}}-\mathrm{s} / \mathrm{p}_{\mathrm{z}}$ σ orbital
(2) As a consequence N_{2} is very stable,
$\mathrm{N}_{2} \xrightarrow{-e-} \mathrm{N}_{2}^{+}$weakens the $\mathrm{N}-\mathrm{N}$ bond. I.E. is very high

CO
a.Highest e^{-}are in an orbital $\sigma_{1}{ }^{2} \sigma_{1}{ }^{2} \pi_{1}{ }^{4} \sigma_{3}{ }^{2}$ that is higher in energy than the starting a.o.'s
(1) As a consequence CO is not as stable, CO
$\rightarrow \mathrm{CO}^{+}$is not as
unfavored
Q. What does ionization of N_{2} versus CO have to do with their reactivity?
For example attaching it as a "ligand" to metals through lone pair
A. Lewis basicity of CO is much higher than N_{2}

$$
: \mathrm{C} \equiv \mathrm{O}
$$

This end binds to Lewis acids such as metal cations
$\mathrm{M}^{\mathrm{n}+}$ ions very
easily. The lone
pair on C carbon is
at high energies
and therefore is
exposed to act as a
Lewis Base.

Extrapolation of M.O. Theory Diatomic to Polyatomic

Linear Triatomics like BeH_{2} which can form only σ orbitals
 $\begin{array}{ll}\oplus & + \\ \text { HIS Be as HIS }\end{array}$

$B^{o_{2}}$ A Antibonding

1) In each bonding orbital, B, The e^{-}density is continuous over adjacent atoms.
In antibonding orbitals, A , there is a node.
2) In each bonding orbital, the electron pair is spread out (delocalized) over entire molecule.

BeH_{2} M.O. Diagram

Be atom
One 2 s and three
$2 p$ orbitals lie at much higher energy than H 1s and they are close together due to lower effective nuclear charge

Two H atoms
Two equal energy
1s orbitals are placed in the diagram.
They are lower in energy due to higher effective nuclear charge.

Bonding in $\mathrm{H}-\mathrm{Be}-\mathrm{H}$

$\sigma_{1}{ }^{2} \sigma_{2}{ }^{2}=4$ Bonding electrons Distributed over two $\mathrm{Be}-\mathrm{H}$ bonds. So two single bonds.

Trigonal Planar Molecules $\mathbf{A B}_{3} \quad \mathrm{BF}_{3}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}$

Recall, we invoked π-bonding in $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{NO}_{3}{ }^{-}$as part of "resonance" structures like these:

Q. But how does M.O. theory account for π bonding?
More to the point: Can M.O. theory explain the one π bond in the above structure needing to be in 3 places at the same time?
A. YES!!!

FIgure 3-35 An energy-level diagram for the three MO's of Fig. 3-34 that are formed in a three-center $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge bond of $\mathrm{B}_{2} \mathrm{H}_{6}$.

M.O. Treatment of AB_{3} planar molecules. For example $\mathrm{BF}_{3}, \mathrm{NO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
Requires two different groups of atomic orbitals to be considered.

1) Hybrid Orbitals on central atom, A, and on B that will be used to make σ - bonds (A-B bonds) and used to house lone pairs (in plane)
2) Group Orbitals on outer atoms, B, that are made of p_{z} orbitals (out-of-plane) that can overlap with the p_{z} orbital on central atom A.

The xy plane is the plane of molecule
The z axis comes out of paper

STEP $1 \quad \mathrm{AB}_{3} \quad$ M.O. Treatment

Use s, p_{x} and p_{y} orbitals to make hybrids on all of the atoms

Network of sp^{2} hybrids involved in A-B bonding or lone pairs (non-bonding)
in the xy plane After all of the bonding pairs and lone pairs are placed in the sp^{2} hybrids in the xy plane, how many electrons are used? $18 \mathrm{e}^{-}$

STEP $2 \quad \mathrm{AB}_{3} \quad$ M.O. Treatment
Take remaining unhybridized p_{z} orbitals on B atoms and group them by making linear combinations
G.O. 1

$$
2 p_{z}(1)-p_{z}(2)-p_{z}(3)
$$

G.O. 3

You obtain three group orbitals that can overlap with the p_{z} orbital on A to form π-bonds, only one of which is a bonding one

STEP $3 \quad \mathrm{AB}_{3} \quad$ M.O. Treatment
Take (24 valence $\left.e^{-}\right)-\left(18 e^{-}\right)=6 e^{-}$and use them to make π-bonds by overlap of the central atom, A, p_{z} orbital and the three G.O.'s

GeO. 3
$+P_{z}$ Bonding and antibonding Combinations

Bonding

Antibonding

You get four molecular orbitals

The part of the M.O. Diagram that depicts the π-bonding is:

if BF_{3} then:

Note, we did not draw a complete M.O. diagram here with all of the orbitals and interactions. It is too complicated to try and get the relative energies of the starting orbitals and M.O.'s correct.

Nevertheless, we succeeded in developing a qualitative picture of the bonding that holds true for these types of molecules.

Bonding and antibonding Combinations

π Bonding M.O.

one continuous molecular orbital
if there are two electrons in this orbital, then this will be one π-bond delocalized over three A-B bonds with a $1 / 3$ bond order for each $A-B \pi$-bond.

$\pi *$ Antibonding M.O.

if this M.O. is empty, then it doesn't affect the bonding at all.

Diagrams showing how π - bonding and π - antibonding M.O.'s arise from overlap of G.O. 3 with the p_{z} Orbital of A.

BF_{3} Only 6 valence
$\mathrm{CO}_{3}{ }^{2-}$ electrons are $\mathrm{NO}_{3}{ }^{-} \quad$ available for π bonding. The $18 \mathrm{e}^{-}$ before this are involved in σ interactions ($24 \mathrm{e}^{-}$ systems).
 non-bonding

Multi-Center Bonding in Electron Deficient Molecules

This happens when you don't have enough electrons to have a two-electron bond between all adjacent atoms.

Examples (classic ones)

* $\mathrm{H} /$ /

There are eight adjacent pairs of atoms in these molecules but count electrons...

$$
\begin{array}{cl}
2 \mathrm{~B} 6 \mathrm{e}^{-}(3 \text { each }) & \begin{array}{l}
\text { You need } 16 \mathrm{e}^{-} \text {to make } \\
\mathrm{H} \frac{6 \mathrm{e}^{-}}{12 \mathrm{e}^{-}}
\end{array} \\
\text {*These bonds but you have } \\
\text { only } 12 \mathrm{e}^{-} \text {which is only }
\end{array}
$$

(note that BH_{3} and $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ are not really the way the formulae indicate - they are dimers of this formula)

Consider these two resonance forms (canonical forms)

This implies that in each $B_{B^{\prime}} \quad{ }^{H} \ddots_{B}$ bridge, that one
electron pair is shared between (or distributed over) two B $\cdot \bullet \cdot \mathrm{H}$ bonds.

This would lead to a bond order of $1 / 2$ for each $\mathrm{B} \cdot \bullet \cdot \mathrm{H}$ bridge bond but still result in the other two terminal bonds being normal $2 \mathrm{e}^{-}$bonds.

Q. Doesn't this seem a little artificial to you?
A. Yes. There is a better way to think about this with M.O. theory

B has sp^{3} hybridization for tetrahedral Boron

- BH_{2} has two ordinary bonds made from two of the four sp^{3} hybrids and the H 1s orbitals.

These BH_{2} fragments are coplanar

- the remaining two sp^{3} hybrids overlap in a perpendicular orientation with the bridging H atoms because the geometry around the B atom is tetrahedral

Formation of three-center two-electron Bonds in $\mathrm{B}_{2} \mathrm{H}_{6}$

Figure 3-33 The formation of $3 \mathrm{c}-2 \mathrm{e}$ bonds in $\mathrm{B}_{2} \mathrm{H}_{6}$. The orientation of two coplanar BH_{2} groups, with $s p^{3}$ hybrids on B atoms, is shown in (a). When the bridging H atoms are placed as in (b), continuous overlap within each $\mathrm{B}-\mathrm{H}-\mathrm{B}$ arch results in two separate $3 \mathrm{c}-2 \mathrm{e}$ bonds.

Combinations of $\mathrm{B} \mathrm{sp}{ }^{3}$ hybrids and H 1 s orbital

$\Psi_{n}=s p^{3}\left(\mathrm{~B}_{1}\right)-s p^{3}\left(\mathrm{~B}_{2}\right)$
non-bonding
signs ar out-of-phaci
So thy will have no
net over lap with 15

$$
\Psi_{b}=s p^{3}\left(\mathrm{~B}_{1}\right)+1 s(\mathrm{H})+s p^{3}\left(\mathrm{~B}_{2}\right)
$$

Bonding

Figure 3-34 The formation of three distinct three-center MO's in a B -H-B bridge system.

FIgure 3-35 An energy-level diagram for the three MO's of Fig. 3-34 that are formed in a three-center $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge bond of $\mathrm{B}_{2} \mathrm{H}_{6}$.

