

N_1	M.O.'s	N_2
a.o.'s	N_2	a.o.'s

10 valence electrons: $\sigma_1^2 \sigma_2^{*2} \pi_1^4 \sigma_3^2$ (B.O. =3.0) M.O. Diagrams for the Isoelectronic N_2 and CO molecules are very different. They help explain the different reactivities of N_2 versus CO in a way that Lewis Diagrams never could (or formal charges!)

 $\frac{N_2}{(1)}$ Highest e⁻ are in a bonding orbital $\sigma_1^2 \sigma_1^{*2} \pi_1^4 \sigma_3^2$, s/p_z-s/p_z σ orbital

(2) As a consequence N_2 is very stable, $N_2 \xrightarrow{-e} N_2^+$ weakens the N-N bond. I.E. is very high <u>CO</u>

- a.Highest e⁻ are in an orbital $\sigma_1^2 \sigma_1^{*2} \pi_1^4 \sigma_3^2$ that is higher in energy than the starting a.o.'s
- (1) As a consequence CO is not as stable, CO \rightarrow CO⁺ is not as unfavored

- Q. What does ionization of N₂ versus CO have to do with their reactivity?
 For example attaching it as a "ligand" to metals through lone pair
- A. Lewis basicity of CO is much higher than N_2

Very difficult to get this lone pair to donate

(low in energy and not accessible!)

Extrapolation of M.O. Theory Diatomic to Polyatomic

Linear Triatomics like BeH_2 which can form only σ orbitals

- In each bonding orbital, B, The e⁻ density is continuous over adjacent atoms. In antibonding orbitals, A, there is a node.
- 2) In each bonding orbital, the electron pair is spread out (delocalized) over entire molecule.

BeH₂ M.O. Diagram

Main Features

Be atom

One 2s and three 2p orbitals lie at much higher energy than H 1s and they are close together due to lower effective nuclear charge

Two H atoms

Two equal energy 1s orbitals are placed in the diagram. They are lower in energy due to higher effective nuclear charge.

Bonding in H-Be-H

 $\overline{\sigma_1}^2 {\sigma_2}^2 = 4$ Bonding electrons Distributed over two Be-H bonds. So two single bonds.

Trigonal Planar Molecules AB_3 BF_3 , CO_3^{2-} , NO_3^{-1}

Recall, we invoked π -bonding in CO₃²⁻ and NO₃⁻ as part of "resonance" structures like these:

Q. But how does M.O. theory account for π-bonding?
More to the point: Can M.O. theory explain the one π bond in the above structure needing to be in 3 places at the same time?

<u>A.</u> YES!!!

Figure 3-35 An energy-level diagram for the three MO's of Fig. 3-34 that are formed in a three-center B-H-B bridge bond of B_2H_6 .

<u>M.O. Treatment of AB₃ planar molecules</u>. For example BF₃, NO₃⁻, CO₃²⁻ Requires two different groups of atomic orbitals to be considered.

- 1) Hybrid Orbitals on central atom, A, and on B that will be used to make σ bonds (A-B bonds) and used to house lone pairs (in plane)
- 2) Group Orbitals on outer atoms, B, that are made of p_z orbitals (out-of-plane) that can overlap with the p_z orbital on central atom A.

The xy plane is the plane of molecule The z axis comes out of paper

 π -bonds, only one of which is a bonding one

STEP 3 AB₃ M.O. Treatment Take (24 valence e^{-})-(18 e^{-}) = 6 e^{-} and use them to make π -bonds by overlap of the central atom, A, p_7 orbital and the three G.O.'s pz(A) bonding G.O. 1 Non-bonding p_{z (2)} +P2 Pz (1) $2p_{z}(1)$ antibonding overlap with $p_{z}(A)$ + bonding overlap of $p_z(A)$ with $p_z(2)$ bonding and $p_{z}(3)$ cancels. $p_{z(3)}$ $p_z(A)$ $P_{z}(2)$ Non-bonding G.O. 2 + P2 P_z(1) B $2p_{z}(2)$ antibonding overlap with $p_{z}(A)$ cancels with $p_{z}(3)$ bonding overlap p_{z(3)} with $p_z(A)$ G.O. 3 **+***P*₂ Bonding and antibonding Combinations $p_z(A)$ **p**_{z(2)} **p**z(2) Pz(1) Pz(1) p_{z(3)} p_{z(3)} **Bonding** Antibonding You get four molecular orbitals

The part of the M.O. Diagram that depicts the π - bonding is:

if BF₃ then:

Note, we did not draw a complete M.O. diagram here with all of the orbitals and interactions. It is too complicated to try and get the relative energies of the starting orbitals and M.O.'s correct.

Nevertheless, we succeeded in developing a qualitative picture of the bonding that holds true for these types of molecules.

The π M.O.'s in AB₃ Molecules that Affect Bonding

Bonding and antibonding Combinations

 π Bonding M.O.

one continuous molecular orbital

top-view

top-view

if there are two electrons in this orbital, then this will be one π -bond delocalized over three A-B bonds with a 1/3 bond order for each A-B π -bond.

 $\pi*$ Antibonding M.O.

if this M.O. is empty, then it doesn't affect the bonding at all.

Diagrams showing how π - bonding and π - antibonding M.O.'s arise from overlap of G.O.₃ with the p_z Orbital of A.

Multi-Center Bonding in Electron Deficient Molecules

This happens when you don't have enough electrons to have a two-electron bond between all adjacent atoms.

Examples (classic ones)

There are eight adjacent pairs of atoms in these molecules but count electrons...

2B 6e⁻ (3 each) H <u>6e⁻</u> 12e⁻ You need 16e⁻ to make 8 bonds but you have only 12e⁻ which is only enough for 6 bonds

*These are not planar (note that BH_3 and $Al(CH_3)_3$ are not really the way the formulae indicate - they are dimers of this formula)

Consider these two resonance forms (canonical forms)

This implies that in each B'B'B electron pair is shared between (or distributed over) two B•••H bonds.

This would lead to a bond order of ½ for each B•••H bridge bond but still result in the other two terminal

bonds being normal 2e⁻ bonds.

- Q. Doesn't this seem a little artificial to you?
- <u>A.</u> Yes. There is a better way to think about this with M.O. theory

B has sp³ hybridization for tetrahedral Boron

- BH₂ has two ordinary bonds made from two of the four sp³ hybrids and the H 1s orbitals.

These BH₂ fragments are coplanar

- the remaining two sp³ hybrids overlap in a perpendicular orientation with the bridging H atoms because the geometry around the B atom is tetrahedral

Formation of three-center two-electron Bonds in B₂H₆

Figure 3-33 The formation of 3c-2e bonds in B_2H_6 . The orientation of two coplanar BH_2 groups, with sp^3 hybrids on B atoms, is shown in (*a*). When the bridging H atoms are placed as in (*b*), continuous overlap within each B—H—B arch results in two separate 3c-2e bonds.

Combinations of B sp³ hybrids and H 1s orbital

Figure 3-34 The formation of three distinct three-center MO's in a B—H—B bridge system.

Figure 3-35 An energy-level diagram for the three MO's of Fig. 3-34 that are formed in a three-center B-H-B bridge bond of B_2H_6 .