Chapter 4

Ionic Solids

Energy of Arrays of Ions:

1. Coulombic (electrostatic) attractive and repulsive $+\ldots+\quad+\ldots-$
2. Additional repulsive energy from overlapping outer electron density of adjacent ions
3. minor terms, mainly van der Waals
A. No covalency is taken into account in this model although it is certainly present to, at least, a small degree.
B. The structures can be described as efficiently packed arrays of ions

As you will see, different sizes of ions pack in different ways. The ionic radii can explain this.
($\mathrm{NaCl}, \mathrm{CsCl}$ and CuCl have different structures)

Six basic types of ionic solids

Rutile has a tetragonal unit cell (lower symmetry than cubic). The titanium cations have a coordination number of 6 , meaning they are surrounded by an octahedron of 6 oxygen atoms. The oxygen anions have a coordination number of 3 , resulting in a trigonal planar coordination.

ZnS (cubic zinc blende)

$\mathbf{Z n S}$ (hexagonal wurtzite)

Lattice Energy

Enthalpy $(\Delta \mathrm{H})$ of forming a solid ionic compound from gaseous ions. The lattice formation enthalpy is the enthalpy change when 1 mole of solid crystal is formed from its gaseous ions. Lattice formation enthalpies are always negative.

Total lattice energy is a sum of attractive and repulsive terms.
This energy is called the Madelung Energy which is a

purely ionic model

It is actually from the Born-Lande Equation
The Born-Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918" Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
for NaCl type structures the equation is:

$$
U=\frac{N M_{N a C l} Z^{2} e^{2}}{4 \pi \varepsilon_{o} r_{o}}\left(1-\frac{1}{n}\right)
$$

- M is Madelung constant and it is the same for all structures that have the same packing geometry. It is a number that represents the sum total of the electrostatic interactions The Madelung constant is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist.
- N = Avagadro's number
$-\mathrm{Z}=$ charges on ions $\left(\mathrm{Z}^{+} \times \mathrm{Z}^{-}=\mathrm{Z}^{2}\right)$
$-r_{0}=$ distance between cation and anion
$-\mathrm{e}=\mathrm{e}^{-}$charge in coulombs
- $\varepsilon_{0}=$ dielectric constant of a vacuum
- $\mathbf{n}=$ factor for compressibility for the solid
$n=$ Born exponent, typically a number between 5 and 12,
determined experimentally by measuring the compressibility of the solid, or derived theoretically
Q. BUT How does one obtain experimental Lattice Energies?

A. Use the Born - Haber cycle

One cannot directly measure the vaporization of $\mathrm{NaCl}(\mathrm{s})$ to $\mathrm{Na}^{+}(\mathrm{g})$ and $\mathrm{Cl}^{-}(\mathrm{g})$ or the reverse condensation process. $\mathrm{NaCl}(\mathrm{s})$ vaporizes to $\mathrm{Na}^{+} \mathrm{Cl}^{-}(\mathrm{g})$ and eventually, at higher temps, they dissociate into atoms

Born - Haber Cycle for NaCl

This Born - Haber Bycle illustrates:
$\mathrm{Na}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{s}) \quad$ which has $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$
And that this reaction can be broken down into steps:
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}=\Delta \mathrm{H}_{\text {vap }}^{\circ}+1 / 2 \Delta \mathrm{H}_{\text {diss }}^{\circ}+\Delta \mathrm{H}_{\mathrm{EA}}^{\circ}+\Delta \mathrm{H}_{\text {ion }}^{\circ}+\mathrm{U}$
From this we can solve for U :
$\mathrm{U}=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}-\Delta \mathrm{H}_{\text {vap }}^{\circ}-1 / 2 \Delta \mathrm{H}_{\text {diss }}^{\circ}-\Delta \mathrm{H}_{\text {EA }}^{\circ}-\Delta \mathrm{H}_{\text {ion }}^{\circ}$
$\mathrm{U}=(-411)-(108)-(121)-(-349)-(-502)$
$\mathrm{U}=-788 \mathrm{~kJ} / \mathrm{mol}$
For NaCl , all the enthalpies except U have been experimentally measured so this value of U is easily obtained. The value obtained above compares very favorably with the Madelung Energy calculated from the Ionic model, which supports our hypothesis that the bonding is nearly perfectly ionic.

Ionic Radii
 $$
\overline{\mathrm{d}=\mathrm{r}^{+}+\mathrm{r}^{-}}
$$

distance between ions in an ionic crystal structure

radius of ions are substantially constant:

For example we can measure the difference in the ionic radii of K^{+}and Na^{+}

$$
\begin{aligned}
\mathrm{r}_{\mathrm{K}+}-\mathrm{r}_{\mathrm{Na}+} & =\mathrm{d}_{\mathrm{KF}}-\mathrm{d}_{\mathrm{NaF}}=0.3 \mathrm{~A}^{\circ} \\
& =\mathrm{d}_{\mathrm{KCl}}-\mathrm{d}_{\mathrm{NaCl}}=0.33 \mathrm{~A}^{\circ} \\
& =\mathrm{d}_{\mathrm{KBr}}-\mathrm{d}_{\mathrm{NaBr}}=0.32 \mathrm{~A}^{\circ} \\
& =\mathrm{d}_{\mathrm{KI}}-\mathrm{d}_{\mathrm{NaI}}=0.30 \mathrm{~A}^{\circ}
\end{aligned}
$$

Since the size difference of K^{+}and Na^{+}as determined in different salts is fairly constant as calculated, then the K^{+}and Na^{+}ions themselves must be staying fairly constant. (they are really ions and not engaging in different degrees of "bonding" as we would consider for interactions that involve a degree of orbital overlap and, therefore, covalency.

Coordination Number

- number of nearest neighbors
- determined mainly by ion size (especially ions which are very large)

lages ataion

Radius ratio

$\frac{r-}{r+}$ defined for "perfect packing"

Which means that the anions are just touching each other while making contact with the cation at the same time

- Cation, Cs^{+}
- Anion, Cl^{-}

Perfect body-centered
Cation-Anion touch at:
$\mathrm{r}^{+}+\mathrm{r}^{-}=\frac{\sqrt{3} a}{2}$
Anion-Anion touch at:
$2 \mathrm{r}^{-}=\mathrm{a} \quad$ (cube edge)

Based on this one Geometry (Body-Centered Cubic), One can come up with the "ideal" ratio of anion to cation size $\rightarrow \frac{r-}{r+}$

For BCC, these EQ'S Apply:

1. $\mathrm{r}^{+}+\mathrm{r}^{-}=\frac{\sqrt{3} a}{2}$
(cation + anion distance)
2. $2 \mathrm{r}^{-}=\mathrm{a}\left(\mathrm{r}^{-}=\mathrm{a} / 2\right) \quad$ (anion + anion distance)

Solve for r^{+}and r^{-}in terms of a :

$$
\begin{aligned}
& \mathrm{r}^{+}+\mathrm{r}^{-}=\frac{\sqrt{3} a}{2} \\
& \mathrm{r}^{-}=\frac{a}{2} \\
& \mathrm{r}^{+}+\frac{a}{2}=\frac{\sqrt{3} a}{2} \\
& \mathrm{r}^{+}=\frac{\sqrt{3} a}{2}-\frac{a}{2}=\frac{\sqrt{3}-1}{2}(a) \\
& \mathrm{r}^{-}=\frac{a}{2}
\end{aligned}
$$

$\frac{r^{-}}{r^{+}}=\frac{a}{2} / \frac{\sqrt{3}-1}{2}(a)=\frac{a}{2} x \frac{2}{(\sqrt{3}-1) a}=\frac{1}{\sqrt{3}-1}=\frac{1}{1.73-1}=\frac{1}{0.73}=1.37$
for cubic CsCl type structures

Geometries of Crystal Lattices

Let us go back to the diagrams of the six basic types of ionic solids

AB 4 types
rock salt (NaCl)
cesium chloride (CsCl)
zincblende (ZnS, Cubic)
Wurtzite (ZnS hexagonal)
$\mathrm{AB}_{2} \quad \underline{2}$ types
Fluorite $\left(\mathrm{CaF}_{2}\right)$
Rutile (TiO_{2})
\quad AB types
Six coordinate NaCl
Eight coordinate CsCl
Four coordinate ZnS (both types)

What this translates to is that when the anion/cation ration is ~ 1.3, the CsCl structure will be adopted.

If one uses the same geometrical arguments for NaCl and ZnS structures (which are 6 and 8 coordination numbers respectively)

The Radius Ratios are:
(rules work best for oxides, halides, sulfides)

			coord.\#
$\mathrm{r}^{-} / \mathrm{r}^{+}$	NaCl	2.44	6
$\mathrm{r}^{-} / \mathrm{r}^{+}$	ZnS	4.44	4
$\mathrm{r}^{-} / \mathrm{r}^{+}$	CsCl	1.37	8

* Important to stress that these are only guidelines, as there are other factors besides ion size that affect packing \rightarrow covalency in some salts versus as opposed to the more purely ionic halides, oxides, sulfides.

Small Cations with Large Anions

Other problems exist when the cation is very small. For example $\mathrm{Li}^{+}, \mathrm{Be}^{2+}, \mathrm{Al}^{3+}, \mathrm{Mg}^{2+}$
and the anions are large such as:
$\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{CO}_{3}{ }^{2}, \mathrm{NO}_{3}^{-}$
In these situations, the anions do not contact the cations very well, even when they are very close to each other:

What are the consequences of small cation/large anion combinations?

1. The anhydrous salts are not stable - they prefer to have the cation surrounded by water.
This means they are very water soluble compared to salts with bigger cations
(consider Li^{+}vs Na^{+}solubilities)
2. They can be thermally unstable. The anion can decompose to a smaller one.

$$
\begin{aligned}
& \mathrm{Li}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& 2 \mathrm{NaO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}+3 / 2 \mathrm{O}_{2}
\end{aligned}
$$

So, we have just seen that both structures and properties can be predicted with some accuracy by knowing the sizes of ions.
Table 4-2 lists Pauling Ionic Radii deduced from effective nuclear charge arguments - one can use these to make predictions.

Closest Packing of Anions

Besides AB and AB_{2} crystal lattice geometries, there are others, with very small cations, that are based only on the closest packing of spheres (anions)
Two main types:

1) Hexagonal Closest Packed ABABAB.....alternating A \& B layers
2) Cubic Closest Packed

ABCABCABC...alternating A, B, C layers
The differences are in the holes that are created by the arrangements of the spheres \rightarrow holes where the cations will reside

Three types of Cubic Celle

eachatom is in contact with six there in the same layer
each atom
in the next layer fits into (The holesimes pelt by the other lager
 layer A layer B

hexagonal close-packled cuibic-close packed

A corner atom
a face-centued atom

(a)

(b)

Shared by 8 unit calls
contributes $1 / 8$ th to each unit cell

Shared by 2 unit cells contribute e $1 / 2$ to each unit

Arrangement of identical spheres in a simple cultic cell.

Top view of alayer of atoms

each corner contribution only $1 / \mathrm{g}^{t h}$ so total atom
(b) in unitcel $($ (c) $=1 / 8 \times 8=1$

52% volume $\frac{4.1988}{8} \frac{\frac{4}{3} \pi k^{3}}{(2 k)^{3}}=\frac{x^{3}}{3} \pi k^{3}$
Coordination $=6^{8} \frac{12 k)^{3}}{8 R^{3}} \frac{\frac{4}{3}}{8 R^{3}}$
Body Centered Cubic

$$
\begin{gathered}
\frac{1}{8}(8)+1=2 \\
l^{2}=x^{2}+x^{2} \\
l^{2}+x^{2}=d^{2}
\end{gathered}
$$

Lord. $=8$

Unit Cell - Simple Cubic, Body Ce
Body Centered Cubic

$$
x=\frac{4}{\sqrt{3}} R
$$

$$
\begin{gathered}
\frac{1}{8}(8)+1=2 \\
l^{2}=x^{x^{2}+x^{3}}=d^{2} \\
x^{2}+x^{2}+x^{2}=d^{2} \\
\sqrt{3 x^{2}}=\sqrt{d^{2}} \\
\sqrt{3}(x)=d \\
\sqrt{3} x=4 R
\end{gathered}
$$

cord $=8$

$$
\begin{aligned}
& X=\frac{4}{\sqrt{3}} R \\
& V_{\text {atoms }}=\frac{2\left(\frac{4}{3} \pi R^{3}\right)}{\left(\frac{4}{\sqrt{3}} R\right)^{3}} \\
& x=\frac{4}{\sqrt{3}} R
\end{aligned}
$$

coned. $=8$

Body Centered Cubic

$$
\text { II } \quad x=\frac{4}{\sqrt{3}} k
$$

$$
\begin{aligned}
& \frac{V_{\text {atoms }}}{V_{\text {cube }}}=\frac{2\left(\frac{4}{3} \pi R^{3}\right)}{\left(\frac{4}{\sqrt{3}} R\right)^{3}} \\
& =\frac{2(4)\left(\frac{1}{3}\right) \pi R^{3}}{\frac{4 \cdot 4 \cdot 4}{3 \sqrt{3}} R^{3}}
\end{aligned}
$$

Body Centered Cubic

$$
\begin{aligned}
& X=\frac{4}{\sqrt{3}} R \frac{2 \pi(\sqrt{3})}{16} \\
& \frac{V_{\text {atoms }}}{V_{\text {abbe }}}=\frac{2\left(\frac{4}{3} \pi R^{3}\right)}{\left(\frac{4}{\sqrt{3}} R\right)^{3}} \\
& =\frac{2(4)\left(\frac{1}{3}\right) \pi R^{3}}{\frac{4 \cdot 4 \cdot 4}{3 \sqrt{3}} R^{3}}=\frac{2 \pi \sqrt{3}}{\frac{16}{\sqrt{3}}} \sqrt{3 / 3}
\end{aligned}
$$

Body Centered Cubic

$$
\begin{aligned}
& x=\frac{4}{\sqrt{3}} R \frac{2 \pi(\sqrt{3})}{16} \\
& =0.6802 \\
& \approx 68 \%
\end{aligned}
$$

Crystal structures of varionomateis.

Many ionic solids can be described by the closest packing argument

Table 4-4 lists different stoichiometries which are a consequence of different occupancies of cations in either hep or ep lattices.

Table 4-4 A Description of the Structures of Ionic Substances Using the Concept of Close Packing of Anions

Figure 4-7 A portion of the CdI_{2} structure. Small spheres represent metal cations.

