Largest use of CO_2 (~50%) is not a chemical use but a refrigerant

$$CO_{2}(s) f.p. = -78.5^{\circ}C$$

"dry ice"

$$CO_{2(s)} \xrightarrow{>-78.5^{\circ}C} CO_{2(g)} sublimation directly from solid to gas!$$

How do you get liquid CO₂?

You have to keep a pressure on the solid when it is melting.

 CO_2 is a liquid $\rightarrow CO_{2(1)}$ at 5.2 atm and -5.6°C

- CO₂₍₁₎ is used to extract caffeine from coffee. It leaves no harmful residues.
- CO₂₍₁₎ is used in fire extinguishers. The more dense CO₂ will displace air around the burning material and keep O₂ from fueling the flames.
- ~25% of CO₂ produced is used in carbonation of beverages

"Chemistry of Soda" $CO_{2(aq)} + H_2O \Longrightarrow H_2CO_{3(aq)}$ $H_2CO_{3(aq)} + H_2O \Longrightarrow HCO_{3(aq)} + H_3O^+$

TABLE 2.6 Some Polyatomic lons	
lon	Name (Alternate Name in Parentheses)
NH4 ⁺	Ammonium ion
H_3O^+	Hydronium ion ^a
OH-	Hydroxide ion
CN-	Cyanide ion
NO_2^-	Nitrite ion
NO_3^-	Nitrate ion
CIO-	Hypochlorite ion
CIO ₂ ⁻	Chlorite ion
CIO3-	Chlorate ion
CIO4-	Perchlorate ion
MnO ₄ -	Permanganate ion
$C_2H_3O_2^{-1}$	Acetate ion
CO32-	Carbonate ion
HCO3-	Hydrogen carbonate ion (bicarbonate ion) ^b
SO32-	Sulfite ion
SO42-	Sulfate ion
HSO4-	Hydrogen sulfate ion (bisulfate ion)
CrO42-	Chromate ion
Cr2072-	Dichromate ion
PO43-	Phosphate ion (orthophosphate ion)
HPO42-	Monohydrogen phosphate ion
$H_2PO_4^-$	Dihydrogen phosphate ion

" You will only encounter this ion in aqueous solutions.

^b Although "hydrogen carbonate ion" is formally correct, "bicarbonate ion" is what you will see and hear the most. We'll use "bicarbonate" too.

CO₂ Reaction with Base: $CO_{2(aq)} + OH_{(aq)} \rightarrow HCO_{3(aq)}$ $HCO_3^{-}(aq) + OH^{-}(aq) \rightarrow CO_3^{-2}(aq) + H_2O_{(1)}$ Other carbon compounds • Cyanides CN^{-1} $[:C=N:]^{-1}$ <u>strong base</u> NaCN sodium cyanide HCN hydrogen cyanide (weak acid) • Reaction of CN⁻ with water: $CN_{(aq)} + H_2O = HCN_{(aq)} + OH_{(aq)}$ equilibrium • <u>Reaction of CN⁻ with a strong acid:</u> strong base $CN_{(aq)} + HCl_{(aq)} \rightarrow HCN_{(aq)} + Cl_{(aq)}$ strong acid Reaction is complete! Properties of Cyanides • HCN is extremely poisonous

- it was used in gas chambers. CN⁻ binds to the heme in your mitochondria that transport O₂. Not the same heme as CO which is your blood heme.
- NaCN is also lethal Hemoglobin in blood is based on Fe Heme in mitrochondria is Cu based

Nitrogen

- 78% of air is N_2
- 25-30 million tons N_2 / year

Industrial Preparation of N₂:

Air $\xrightarrow{liquify}$ N₂ (collected first) Ar O₂

Uses of N₂:

- Enhanced oil recovery to force oil from subterranean deposits (~30% of N₂ made)
- Coolant (low b.p. 77k (-196°C)) freezing perishables (meat, seafood)
- Unreactive gas in chemical industry used as a blanketing atmosphere

<u>Nitrogen Cycle</u> helps to maintain balance of N_2 in the atmosphere.

- Plants remove N_2 to make \underline{NH}_3
- Plants <u>decay</u> back to N₂

Nitrogen Fixation:

Name given to the reactions that microorganisms use to make \underline{NH}_3 from \underline{N}_2 .

Ammonia:

- Sharp odor
- Irritates lungs. Can cause death if inhaled in large quantities

• Used as a fertilizer by injecting directly into the soil

Haber – Bosch Process:

 $N_{2}(g) + 3H_{2}(g) = 2NH_{3}(g)$ $\Delta H = -92.38KJ$ requires a catalyst and high pressure $\begin{cases} 100 - 300atm \\ 450 - 500^{\circ}C \end{cases}$ Negative ΔH means <u>exothermic</u>. The extreme conditions are required because of the large kinetic barrier to the reaction N₂ + H₂ = energy released NH₃

Properties of NH₃:

- b.p. -33.4°C
- f.p. -77.7°C
- very soluble in H_2O due to <u>H-bonding</u> ability. It is a <u>weak base</u> in H_2O .

 $NH_{3(aq)} + H_2O \Longrightarrow NH_{4(aq)}^+ + OH_{(aq)}^-$ (an equilibrium exists in H₂O)

- Reacts completely with strong acids $NH_{3(aq)} + HCl_{(aq)} \rightarrow NH_4Cl_{(aq)}$
- Dissolves Group IA, IIA metals Na + NH₃₍₁₎ → Na⁺ + NH₃₍₁₎ + e⁻ The e⁻ is "solvated" by NH₃!!

Amides

NH₂⁻

- NH₂⁻ is a powerful <u>base</u> and is found in combination with metals such as Na⁺ and K⁻
- Amides react with H₂O to give strongly <u>basic</u> solutions.

 $NaNH_2 + H_2O \rightarrow NH_{3(aq)} + NaOH_{(aq)}$

Ammonium

• NH₄⁺ is slightly <u>acidic</u>

• Reacts with <u>bases</u>:

 $NH_4^+Cl_{(aq)}^- \rightarrow NH_{3(aq)}^- \rightarrow NH_{3(aq)}^- + NaCl_{(aq)}^- + H_2O_{(1)}^-$

Nitrides

 $\mathrm{NH_4}^+$

 N^{3-}

- N³⁻ combined with metals
- (i.e. Mg₃N₂, Li₃N) are ionic
- N³⁻ combined with non-metals (i.e. P₃N₅, BN) are covalent

The most important oxo acid of nitrogen

Resonance forms of Lewis structure

Ostwald Process to make Nitric Acid:

- Very important reaction
- Discovered by the German scientist Ostwald in 1902
- It's discovery is thought to have prolonged WWI because Germany had been cut off from importing nitrate salts from Chile by the Allies. Nitrates are used in explosives.

Oswald Process is 3 steps:

(1)
$$4NH_{3(g)} + 5O_{2(g)} \xrightarrow{Pt/Rh} 4NO_{(g)} + 6H_2O_{(g)}$$

 $900 \circ C \qquad \Delta H = -1170 \text{ KJ}$
Very exothermic!
(Ammonia to nitric oxide)

(2) $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$ This is down-stream from the NH₃+ O₂ reaction (1). (nitric oxide to nitrogen dioxide)

(3) $3NO_{(g)} + H_2O \rightarrow 2HNO_{3(aq)} + NO_{(g)}$ (nitrogen dioxide to nitric acid and nitric oxide) Overall:

 $\begin{array}{l} NH_{3(g)} + 2O_{2(g)} \rightarrow HNO_{3(aq)} + H_2O \\ \underline{Uses \ of \ Nitric \ Acid} \\ 1) \ To \ make \ NH_4NO_3 \ for \ \underline{fertilizers} \end{array}$

 $NH_3 + HNO_3 \rightarrow NH_4NO_3$

2) To make NH₄NO₃ for <u>explosives</u>

Alfred Nobel, a Swedish chemist, discovered how to safely handle <u>nitroglycerine</u> with the NH₄NO₃ and amassed a fortune, some of which he used to fund the Nobel Prizes.

NH₄NO₃ is unstable.

 $\frac{\text{Decomposition of NH}_4\text{NO}_3:}{\text{Under mild conditions:}}$ $\frac{\text{NH}_4\text{NO}_3(s)}{\text{200-260 °C}} N_2\text{O}(s) + 2\text{H}_2\text{O}(g)$

With strong heating: $2NH_4NO_3(s) \xrightarrow{>300 \circ C} 2N_2(g) + O_2(g) + 4H_2O(g)$ (2 moles solid $\rightarrow 2 + 1 + 4 = 7$ moles of gas) Rapid expansion occurs!

The violent explosion of a ship being loaded with fertilizer (NH₄NO₃) in Texas City, Texas took the lives of ~600 persons in 1947.

 $4C_{3}H_{5}N_{3}O_{9} \rightarrow 6N_{2} + 12CO + 10H_{2}O + 7O_{2}$ Nitroglycerine

(4 molecules of liquid \rightarrow 35 moles of gas!)

The expanding gases cause a violent detonation but no smoke!

<u>Dynamite</u> – this is a mixture of Nitroglycerine/NH₄NO₃/wood pulp/CaCO₃

(this is a filter used to neutralize any acids that may form during storage)

Oxygen

50% of all atoms on earth are oxygen. 61% of all atoms in earth's crust are O. (crust is 16-40 km thick)

 O_2

- Diatomic
- Colorless, odorless, tasteless

Allotropes:

(different molecular forms of the same element)

- O₂
- O₃

Isotopes: Three for O: ${}^{16}O$ ${}^{17}O$ ${}^{18}O$ 99.8% 0.2%

Dry air is ~ 21% of $O_2 \rightarrow$ this has not changed for millions of years due to the <u>oxygen cycle</u> in nature which maintains the balance.

- Oxygen $\underline{consumed} \equiv oxygen \underline{produced}$
- respiration photosynthesis by cholorophyll-
- decay containing organisms
- combustion of fuels

Photosynthesis

 $nCO_2 + nH_2O \xrightarrow{\text{sunlight}} (CH_2O)_n + nO_2$ carbohydrates (especially glucose) Note: >50% of all O₂ from photosynthesis comes from

photoplankton in oceans

- The cycle continues when decay, respiration and combustion take O₂ back to CO₂ and H₂O.
- Q What would happen if the oxygen cycle did not maintain O_2 concentration in air at ~21%?

A

Everything would burn out of control - forest fires, house fires etc.,

Why?

Because the rates of reactions increase with higher concentrations of reagents.

Industrial Production of
$$O_2$$
:
Air liquify Liquid Air $\rightarrow N_2$ (1)
Ar (2)
 O_2 (3)
 N_2 , Ar boil off first; wait to collect pure O_2

Laboratory (small scale) Synthesis of O₂:

 $2 \text{ KClO}_{3(s)} \xrightarrow{\text{MnO}_2(\text{cat})} 3\text{O}_{2(g)} + 2\text{KCl}_{(s)}$

Uses of O_2 :

(top 5^{th} chemical in the U.S. ~ 19 million tons)

- 1) steel industry blast furnaces
- 2) chemical industry plastics
- 3) sewage treatment aerobic bacteria
- 4) health industry respirators
- 5) rocket industry fuel

Ozone

 O_3

Pungent odor Lewis structure/VSEPR

- Importance of O₃ for life: It absorbs hv in the UV range which screens us from this harmful radiation O₃ + UV light → O₂ + O
- <u>Oxidizing Ability of O₃</u>
 Very strong oxidant in basic and acidic media.
 Second only to fluorine in its oxidizing ability
- Ozone is a dangerous pollutant in smog. It attacks trees, fabrics, rubber, plastics, & <u>lungs!</u>
- at 0.0000005% O₃ in air (0.5 <u>parts per million</u>) young children and elderly people are at risk
- at 0.00001% O₃ (1 ppm) O₃ is dangerous to everyone

Oxides

All elements except Noble gases form oxides

Three catagories: (THIS IS ALL REVIEW)- we covered it already – this will be on the final

- Basic ionic oxides (form with metals)
- Acidic covalent oxides (form with non-metals, metalloids, some metals)
- Amphoteric can be ionic or covalent (form with metals)

Basic Oxides

- Form OH⁻ in H₂O
- Groups I, IA (except Be), In, Tl, some transition metals

 $MgO_{(s)} + H_2O \rightarrow Mg(OH)_{2(s)}$ (insoluble hydroxide)

Acidic Oxides

- Form acids in water
- All non-metals except noble gases. SO₃, SO₂, NO, NO₂, SiO₂, Sb₂O₃, etc., and some transition elements

Examples: $SO_3 + H_2O \rightarrow H_2SO_{4(aq)}$ $CrO_3 + H_2O \rightarrow H_2CrO_{4(aq)}$

Amphoteric Oxides

- Can be either acidic or basic
- Al, Ga, Sn, Pb and most transition metals
- They can neutralize acid or base

Example: Al_2O_3 (amphoteric) (C) $Al_2O_{3(s)} + 2OH_{(aq)}^- + 7H_2O \rightarrow 2[Al(H_2O)_2(OH)_4]_{(aq)}^-$

(B) $Al_2O_{3(s)} + 6H^+_{(aq)} + 9H_2O \rightarrow 2[Al(H_2O)_6]^{3+}_{(aq)}$

In reaction (A), Al_2O_3 is an acid In reaction (B), Al_2O_3 is a base How do you predict if a transition metal oxide will be acidic, basic or amphoteric?

Two trends

Trend 1

The <u>higher</u> the <u>oxidation state</u> of the metal, the more <u>covalent</u> (acidic) it will be.

Trend 2

The <u>lower</u> the <u>oxidation state</u> of the metal, the more <u>ionic</u> (basic) it will be.

```
Consider: Cr<sup>+2</sup>O, Cr<sub>2</sub><sup>+3</sup>O<sub>3</sub>, Cr<sup>+6</sup>O<sub>3</sub>
Most ionic is CrO (lowest ox. state)
Most covalent is CrO<sub>3</sub> (highest ox. state)
∴ CrO would be basic
CrO<sub>3</sub> would be acidic
Cr<sub>2</sub>O<sub>3</sub> would be amphoteric
```

Practice these: Mn₂O₃, MnO, [MnO₄]⁻ OsO₄, OsO₂, OsO

Peroxides (O_2^{2-}) ox. state is O^{-1}

- Hydrogen peroxide: H₂O₂
- colorless liquid
- strong oxidizing agent
- used as a bleach, disinfectant $H_2O_2 \xrightarrow{\Delta} H_2O + \frac{1}{2}O_2$ Exothermic!
- Alkali Metal Peroxides: M_2O_2 Na_2O_2 K_2O_2 M^+ $O-O^-M^+$